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Fluctuation theorem for a single particle in a moving billiard: Experiments and simulations
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A single particle within a periodically driven Sinai-billiard-like system is tracked experimentally and is
simulated via hard-sphere molecular dynamics. Both experiments and simulations confirm the fluctuation
theorem (FT); thus, in this setup, one driven particle is sufficient for the FT to hold. Furthermore, in the
simulations the chaoticity of the system can be adjusted using the restitution coefficient of collisions. It is also
shown that the FT breaks down when unstable periodic orbits appear for small restitution coefficients.
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I. INTRODUCTION

The fluctuation theorem (FT) can be considered a gener-
alization of the second law of thermodynamics for finite sys-
tems (for reviews, see [1,2]) and is of fundamental impor-
tance in biochemical motors and nanomachines [3]. It was
first shown to hold for shear-flow simulations [4] and for
time-reversible chaotic Anosov systems consisting of many
particles [5]. Later on, the FT was verified numerically in a
number of systems, such as an electrical conduction device
[6], coupled oscillators [7,8], and the shell model of turbu-
lence [9]. Also, calculations were reported [10-14] in which
it was shown that the source of disorder may not necessarily
be a large number of particles, but stochasticity (see discus-
sions in [11,15,16]).

Experimental verifications of the FT have been reported
for (i) fluctuations in turbulent flows of fluids [17-19]; (ii) a
Brownian particle in an optical trap [15,20]; and (iii) voltage
fluctuations of a resistor [21]. It is noteworthy that there have
been experiments which showed that the FT is valid for spa-
tial scales of everyday life, namely, in a granular medium
consisting of an ensemble of shaken glass beads [22].

Further loosening of the conditions for the FT was found
in simulations of a system that neither consists of many par-
ticles nor requires stochasticity. This sytem consists of a
single particle that is shaken chaotically in a Duffing poten-
tial [23]. However, we found this setup difficult to implement
experimentally. We therefore devised another one-particle,
nonstochastic system, which we will describe in the present
work. For this device, we will check the following formula-
tion of the FT, which was also used in [23]:

pUD s
p(_]f)_e . (1)

p(J,) is the probability of the mean flux J, (of work, momen-
tum, heat, etc.) during the time 7. Here, we consider the
mean flux of the work W, i.e., the mean power J =W_/7,
where W, is the work performed within the time 7 by the
system in a steady state, where transients from initial condi-
tions have decayed.
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II. EXPERIMENTS

The experimental setup is shown in Fig. 1. In the lower
part of the figure one sees a so-called gyratory mixer (GM 1,
Ratek Instruments, Australia), which moves the box (darker
part of Fig. 1) that is placed above it. The box’s movement
caused by the gyratory device is a precession around verti-
cality (frequency f, angle @) of an imaginary perpendicular
line fixed at the center of the box’s bottom. In the present
work, we set f=0.6 Hz and @=5°. The box contains 4 X 4
cylindrical steel pins (diameter 0.5 cm; height 1.5 cm),
which are fixed equidistantly on the bottom (distance be-
tween pins, d=3.75 cm; distance between pins and the box’s
wall, d/2). A steel wall (height 1.5 cm) surrounds the box.

A glass sphere (white in Fig. 1; diameter 1.2 cm; mass
m=2.21 g) is placed in the box. A chaotic motion of the
sphere is expected due to the divergence of nearby trajecto-
ries owing to collisions between convex surfaces. The sphere
was monitored by video equipment with 278 frames per sec-
ond. The experiments lasted 7=12 h, i.e., 1.2 X 107 frames
were recorded. We determined

FIG. 1. Experimental setup. A motor in the lower part causes a
precession of the darker, upper box with 4 X 4 fixed cylindrical pins
and a moving sphere.
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FIG. 2. Experimental results. 7=0.1 (+), 0.4 (X), 0.6 (), 0.7
(O), 0.8 (A), and 1.0s (<). (a) Probability distributions of the
mean power J . (b) Plot of In[p(J,)/p(=J,)] vs J,, as obtained from
(a). (c) B,=7/S,vs 7, where S, are the slopes of the straight lines
shown in (b).

1 =+T N
JTz—f F-vdt (2)
t

for a given time 7. v is the velocity, which was calculated

from the positions of the sphere in successive frames. F is
the gravitational force

F= mg sin(a)(ij)z((z)) ) (;f ) , (3)

where X and y are the unit vectors on the bottom of the box
and ¢p=2m7ft+ ¢, is the angle of the line connecting the low-
est point of the box with its center. For highest precision, ¢
was determined, as a function of time, by video monitoring
the rotating motion of the corners of the box.

Figure 2(a) shows the probability distribution function
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FIG. 3. Simulated probability distribution of the mean power J ..
7=0.05 (+), 0.2 (X), 0.4 (), 0.6 (O), 0.8 (A), and 1.0s (). e,
=e,,=0.5.

p(J,), as determined from the measurements. The parts of the
curves with negative J, become smaller as 7 increases, as
expected from the “classical” second law of thermodynam-
ics. For a quantitative check of the FT, as given by Eq. (1),
In[p(J, /p(=J,)] was plotted versus J, in Fig. 2(b). We ob-
tained linear relationships, confirming Eq. (1). According to
this equation, the slopes S, of the fitted straight lines [exem-
plified in Fig. 2(b)] should be given by S.=7/f,. Therefore,
B,=7/S, was plotted versus 7in Fig. 2(c). One sees a mono-
tonically decreasing dependence B,(7), saturating at large 7
to a value B,~2.7X107°J.

III. SIMULATIONS

We approximated the system by performing calculations
in two dimensions, the sphere being considered as a circle
with the same diameter. Also, the dimensions of the box and
the pins, as well as the duration 7 of the evaluated process,
were the same as in the experiments. The circle was assumed
to move without friction and without rotation. Hard-sphere
simulations were used, i.e., a collision changes the momen-
tum instantaneously. After a collision of the circle with a pin
or with the wall, the component of the velocity of the sphere
perpendicular to the pin’s surface or the wall was multiplied
by the corresponding restitution coefficient [e,, (e,) for col-
lisions with the wall (pins)]. As time step of integration we
chose dt=10%s, and found no significant change in the result-
ing distributions when changing dr.

Figure 3 shows an example of a simulated set of typical
distributions p(J,). Figure 4 shows four examples of linear
relationships of In[p(J,/p)(=J,)] versus J,, confirming the
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FIG. 5. Plots of B,=7/S, vs 7, where S, are the slopes of the
straight lines shown in Fig. 4 (simulations). e,,, e,, for (a)—(d) are as
in Figs. 4(a)-4(d), respectively.

FT, as given by Eq. (1). Figure 4(a) corresponds to Fig. 3.
Elasticity is increased in Fig. 4(b). In Fig. 4(c) we assume a
perfectly elastic wall, i.e., e,,=1. This last situation could be
compared to that of a Sinai billiard, where collisions with the
wall are equivalent to an absent wall and an infinite number
of pins behind it; however, due to the inclination of the box,
the Sinai-billiard analogy is only an approximate character-
ization. Figure 4(d) shows the results for (almost) complete
elasticity for all collisions (e,=1 and e,,=0.975). Note that
complete elasticity, i.e. e, =e,=1, gives p(J,) curves that are
symmetrical with respect to J,=0, i.e., the left side of Eq. (1)
collapses to 1. Figure 5 shows that 3, saturates for large 7 to
a value B, in the four evaluated cases, as was also shown
experimentally in Fig. 2(c).

B- has been considered as the “effective temperature” of a
system [9,22]. In view of this, we determined B, versus the
mean Kinetic energy (E,;,) of the sphere, as shown in Fig. 6.
In order to alter (Ej;,), we varied e, and e,,, considering that
increasing e, or e, decreases dissipation and thus increases
(Ep»- As shown in Fig. 6, we chose three different paths
toward elasticity in the e,-e, plane, all three yielding very
similar results. In other words, the dependence B., vs (E};,) is
robust with respect to the internal mechanism that changes
<Ekin>'
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FIG. 6. B.. (left ordinate) versus the mean kinetic energy (Ej;,)-
e, and e,, are increased from left to right in the following ways:
e,=e,, from 0.5 to 0.975 (X); e,=1, e, from 0.5 to 0.95 (O); e,
=1, e, from 0.5 to 0.95 (+). Right ordinate: B../{Ey;,) for ¢,=e,,
(X).

An analysis of the residence distribution of the particle on
the plane showed that such a distribution is correlated with
the validity of the FT. This finding is illustrated in Fig. 7.
Figure 7(a) shows the spatial distribution for the experiment
corresponding to Fig. 2. This distribution reveals deviations
from homogeneity, especially near the wall. In contrast,
simulations with ep>0.6 and e¢,>0.6, e.g., in the cases of
Figs. 4(b)-4(d), give a homogeneous spatial distribution like
the one shown in Fig. 7(b). Simulations with lower restitu-
tion coefficients, e.g., e,=e,,=0.5 [case of Fig. 4(a)], do yield
spatial inhomogeneities comparable to those in experiments
[Fig. 7(c)]. Note, however, that such inhomogeneities do not
cause breakdown of the FT, as demonstrated by the linearity
of the plots in Fig. 4(a) (simulations) and Fig. 2(b) (experi-
ments). Finally, Figs. 7(d) and 7(e) show simulated distribu-
tions, where clearly unstable trajectories are present, which
are frequently visited and thus appear as dark curves. As
shown by the breakdown of the corresponding linear plots
(see Fig. 8), these cases are not associated with validity of
the FT. We found such a failure of the FT to occur for suf-
ficiently low values of e, or e,

After scanning the parameter plane defined by e,, and ¢,
in the simulations, we can sum up the results (exemplified
above) as follows. High elasticity yields homogeneous spa-
tial distributions and validity of the FT. Lowering of the
elasticity causes inhomogeneous distributions without loss of
the validity of the FT; this is also the case in experiments.
Extreme lowering of the elasticity causes the appearance of
unstable trajectories and failure of the FT. Apparently, the

X
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FIG. 7. Spatial distribution of the position of the sphere’s center, obtained by averaging over 12 h. The surrounding black squares show
the borders of each box. The (forbidden) white space next to the borders has a width equal to the radius of the sphere; the white circles have
a radius equal to that of the pins plus that of the sphere. (a) Experiment. (b) Simulations with e,=e,,=0.7 [Fig. 4(b)]. (c) Simulations with
e,=e,=0.5 [Fig. 4(a)]. (d) Simulations with ¢,=e,,=0.15 [Fig. 8(a)]. (¢) Simulations with e,,=0.1, e,=1 [Fig. 8(b)].
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FIG. 8. Breakdown of linearity for In[p(J,)/p(-=J,)] vs J,, as
obtained from simulations. Symbols for different 7 are as in Fig. 3.
(a) e,=e,,=0.15; (b) ¢,,=0.1, ¢,=1.

degree of disorder necessary for the FT is not given in this
latter case.

As a test for the robustness of the results with respect to
T, we reduced T to one-half; this yielded no significant
change of any of the distributions p(J,).

IV. DISCUSSION

While Gaussian distributions p(J,) have been reported for
some systems [9,13,23] we obtained non-Gaussian distribu-
tions p(J,), as in a large number of reported investigations
(e.g., [18,21,22,24,25]). In our distributions of J, we obtain
enhancements of p(J,) at J, near 0, which is due to the slow-
ing down of the sphere after a collision. These enhancements
cause no significant distortions of the linear plots.

We found that S, versus 7 changes monotonically and
saturates to a constant value for .. This is in agreement
with previous investigations. However, the approach to S
differs in different systems: dB/dt>0 [9,14,17], dB/dt=0
[22], or dB/d7<0 [23]. In the present system, dB/d7T<0 for
the experiments and for the simulations corresponding to
Figs. 3—-6, while for simulations with different parameters,
e.g., for e, =1 and 0.25<ep<0.5, the result is dB/dT>0.
These discrepancies concerning the sign of d3/dt remain to
be clarified.

Figure 6 shows a clear monotonic dependence of 3., ver-
sus (Ey;,)- At least from that point of view, the consideration
of B, as a “temperature” makes some sense, although we are
dealing here with a dissipative system out of equilibrium
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consisting of only one particle. An attempt to correlate S,
with (E,;,» had already been made by Feitosa and Menon
[22] for a granular medium, for which B../(Ey,)=5 was
obtained. For the results shown in Fig. 6, this quotient varies
between 0.3 and 7.6.

The effective temperatures [, obtained in simulations
(Fig. 6) are much larger than the value obtained from experi-
ments [Fig. 2(c)]. This is explainable by the omission of
friction in the simulations. The omission of rotation and the
reduction to two dimensions in the simulations may also in-
fluence the difference between experiments and simulations.

Another result of this work that is explainable by the
omission of friction in the calculations is the fact that the
best match to experiments (regarding spatial inhomogene-
ities and the validity of the FT) is obtained for restitution
coefficients lower than expected, e.g., for e,=e,=0.5. In
fact, values found in the literature are in the order of 0.8-0.9
[26] and yield homogeneous distributions [like Fig. 7(b)] in
our calculations. This can be explained by assuming that the
enhanced dissipation in our calculations (due to low e, and
e,,) compensates the missing friction.

V. CONCLUSIONS

In the derivation of the FT by Gallavotti and Cohen [5], a
many-particle, time-reversible, chaotic Anosov system was
assumed. It has also been shown that the FT is valid for
dissipative systems [4,9,15,17,20]. In addition, it was shown
that a many-particle system is not necessary if one assumes
stochasticity [10-14]. In recent work [23], it was shown nu-
merically that neither a many-particle system nor stochastic-
ity is necessary, since the trajectory of a single, chaotically
driven particle can be described by the FT. In the present
work, we gave experimental evidence for this latter case and
supported it with corresponding simulations. It is left to fu-
ture work to determine the general conditions for a FT de-
scribing a single, driven particle, such as that in the experi-
ments reported above.
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